PART - A

(Objective Type)

Choose appropriate answer from the options in the questions. One mark each.

$$(60 \times 1 = 60)$$

The packing fraction for an SC lattice as compared to that of fcc lattice is

b)

a) Greater

Smaller

c) Can be both greater or smaller d) Not possible to say

- A photon has the properties except
 - a) Zero intrinsic angular momentum
 - b) Its momentum is $\frac{h\theta}{c}$
 - c) Its total energy is kinetic
 - d) It has zero rest mass
- 3. Which one of the following molecules does not exhibit a rotational spectrum?

2 .

a) H₂ b) CO c) HCI d) HBr

L - 4038

4.	The numerical value of the radius of the first orbit of hydrogen atom is											
	a)	0.529 nm	b)	0,0529 A°	c) 5	.29 A°	d)	0.0529 nm				
5.	The	half life of one	of the	e atoms of a ra	adio active sample is							
	a)	$e^{-\lambda/2}$	b)	$\frac{\ln 2}{\lambda}$	c)	$\frac{\ln \lambda}{2}$	d)	$\frac{\lambda}{2}$				
6.	An oscillator differs from an amplifier because											
	a) It has more gain					b) It requires no input signal						
	c)	It requires no	dc su	pply	d)	It always has the same output						
7.	The Gibb's potential is defined as											
	a)	G = U-PV+TS		b)	G = U+PV+TS	3						
	c)	G = U-PV-TS			d)	G = U+PV-TS	3					
8.	Bohr postulated in his model quantisation of											
	a)	a) Energy				b) Linear momentum						
	c)	Angular mome	entun	n :	d)	Spin						
9.	The Pauli exclusion principle states that											
	a) Particle with half integral spin cannot exist in the same state											
	b) Particle with integral spin exist in same state											
	c) Particle with half integral spin can exist in the same state											
	d)	d) Particle with integral spin cannot exist in the same state										
10.	The force which is always directed away or towards a fixed centre and magnitude of which is a function only of the distance from the fixed centre, known as											
	a)	Coriolis force			b)	Centripetal for	rce					
	c)	Centrifugal for	rce		d)	Central force						
11.	A physical system is invariant under rotation about a fixed axis. Then the following quantity is conserved a) Total linear momentum											
	b)											
	c)											
	d)	Angular mome	entun	n along the axi	s of r	otation						

The period of oscillation for compound pendulum is

a)
$$2\pi\sqrt{\frac{k^2+l^2}{gl}}$$

$$b) \quad 2\pi \sqrt{\frac{gl}{k^2 + l^2}}$$

c)
$$2\pi \sqrt{\frac{k^2 + l^2}{mgl}}$$

d)
$$2\pi \sqrt{\frac{mgl}{k^2 + l^2}}$$

13. A field is irrotational if

- a) grad A = 0
- Þλ
- $\operatorname{div} \vec{A} = 0 \quad c) \quad \operatorname{curl} \vec{A} = 0$
- d) None of these

14. In a differentiator, the feedback element is a

- a) Resistor
- b) Capacitor
- c) Zener diode
- Voltage divider d)

The magnetic moment associated with the first orbit in hydrogen atom is given by

a)
$$\frac{h}{4\pi me}$$
 b) $\frac{4\pi m}{he}$ c) $\frac{eh}{4\pi m}$

b)
$$\frac{4\pi n}{he}$$

c)
$$\frac{eh}{4\pi m}$$

d)
$$\frac{ehm}{4\pi}$$

The splitting of a spectral line in the presence of an electric field is called

Stark effect a)

- b) Zeeman effect
- C) Paschen-Back effect

d) Raman effect

17. When an electron and positron annihilate?

a) Nothing is created

- b) One photon created
- Two photons created C)
- d) Two neutrons created

The change in entropy is

- Positive in a reversible change a)
- Negative in an irreversible change b)
- Positive in an irreversible cycle C)
- Negative in a reversible change

19. The energy per unit time, per unit area transported by the electromagnetic fields is expressed as

a)
$$\vec{S} = \left(\frac{1}{\mu_0}\right) (\vec{E} \times \vec{B})$$

b)
$$\vec{S} = (\vec{E} \times \vec{B})$$

c)
$$\vec{S} = \mu_0 \left(\vec{E} \times \vec{B} \right)$$

d)
$$\vec{S} = \frac{1}{\varepsilon_0} (\vec{E} \times \vec{B})$$

20.	For	or a full wave rectifier, the minimum number of diodes required is										
	a)	2	b)	3	c)	4	,	d)	1			
21.	equ	ay of light is in al to the Brew t. air, then angl	ster's	angle φ . If	μ re	presents	the re	fract	angle of ive inde	incidence x of glass		
	a)	90° + φ	b)	$\sin^{-1}(\mu\cos\phi)$	p) c)	90°		d)	- sin ⁻¹	$\left(\frac{\sin\varphi}{\mu}\right)$		
22.	lf a	star is moving t	oward	ds earth, ther	n the li	nes are sl	nifted t	owar	ds			
	a)	Red	b)	Green	c)	Infrared		d)	Blue			
23.	A c	double slit inte ingement is dip	erfere ped ir	nce experim	nent is fringe	carried width	out i	n ai	r and t	the entire		
	a)	Increases		•	b)	Decreas	es					
	c)	Remains unch	nange	d	d)	Fringe p	attern	disa	pears			
24.	The	gate for which	outpu	ut is high, if a	t least	on input is	s low i	 S	÷ .			
	a)	NAND		NOR		AND	201 2	d)	OR			
25.	Of com	the following	g wh	nich is pre	eferred	l modula	ation	sch	eme fo	or digital		
	a)	Pulse code me	odula	tion	b)	Pulse an	nplitud	e mo	dulation	1		
		Pulse width m				Pulse po			1			
26.	at	a plane elect a frequency olitude of oscilla	of 2.	$.0 \times 10^{10}$	Hz a	electric nd ampl	field o	oscill is 4	ates si 48 V i	nusoidally m ⁻¹ . The		
	a)	3.2 × 10 ⁻⁸ T	b)	$3 \times 10^7 \text{ T}$	c)	16 × 10 ⁻⁷	7	d)	1.6 × 10) ⁻⁷ T		
27.	are	a transformer, 5 and 4 resp urrents in the pi	ective	ely. If 240V	is ap	plied on	ry coil the pr	and imar	d secor y, then	ndary coil the ratio		
	a)	4:5	h)	5:4	c)	1.3		۹/	2.1			

						- I- 1114.	and	magi	netic	sus	centi	hilit
28.	Theis	e relation b	etwee	n relative				magi	101.0		oopti	omty
	a)	$\mu_r = 1 - \chi_m$	b)	b) $\mu_r = 1 + \chi_m$								
	c)	$\mu_r = 3(1+\chi_r)$	_n)		d)	$\mu_r = \gamma$	Y_{χ_m}					
29.	sur	surface encl									ugh	the
	a)	Positive	b)	Negative	c)	Zero		d)	Infin	ite		
30.		e rest mass 0.6c, then its			is m	_o . wher	n it	moves	s with	a	velo	ocity
	a)	m_0	b)	$\frac{5}{4}m_0$	c)	$\frac{4}{5}m_0$		d) 4	2 <i>m</i> ₀			
31.		nstraint in the c Dynamic con		Sclero	nomoi	ıs con	straint	,				
	,	Rheonomous	•	Static				54				
32.	The	zero point ene	ergy o	f harmonic c	scillato	r is		,	٧			
	a)	ħω	b)	$\frac{1}{2}\hbar\omega$	c)	2ħω		d)	$\frac{1}{4}\hbar\omega$,		
33.	Whi	ich of the follov	ving is	not a bosor	1?							
	a)	Neutral heliur	b)	lpha -parti	cles							
	c)	photon	, .	¥	d)	muons						
34.	The	energy of pho	to-ele	ctron in phot	to electr	ic effect					L	
	a)	Changes with	inten	sity of light								
	b)	Changes with frequency of light										
	c)											

None of these

d)

- 35. The hydrogen atom is in d-state. For this state the value of m are
 - a) 2, 1, 0

b) -1, 0, 1

c) -2, -1, 0, 1, 2

- d) -3, -1, 0, 1, 3
- 36. When applied to solar radiation, Planck's law reduces to Wien's law in the
 - Ultraviolet region a)

b) Microwave region

C) Infrared region

- Visible region d)
- 37. If the degree of freedom of a gas is n, then the ratio of C_p and C_v is
 - a) $1+\frac{2}{n}$ b) $1+\frac{1}{n}$ c) $1+\frac{1}{2n}$ d) $\frac{2n}{2n+1}$

- 38. According to Maxwell's law of distribution of velocities of molecules, the most probable velocity is
 - Greater than the mean velocity a)
 - b) Equal to the mean velocity
 - Equal to the root mean square velocity c)
 - Less than the root mean square velocity d)
- 39. Consider the Fermi-Dirac distribution function f(E) at room temperature (300K) where E refers to energy. If E_F is the fermi energy, which of the following is true?
 - f(E) is a step function a)
 - b) $f(E_F)$ has a value of $\frac{1}{2}$
 - States with $E < E_F$ are filled completely c)
 - f(E) is large and tends to infinity as E decreases much below E_{E} d)
- 40. The fermi energy of a free electron gas depends on the electron density ρ as
 - a) $\rho^{1/3}$
- b) $\rho^{2/3}$
- c) $\rho^{-1/3}$
- d) $\rho^{-2/3}$

								199					
41.	The	e entropy of a pl	hoton	gas is pro	portional	to	d)	T4					
	a)	T	b)	T ²	c)	\mathcal{T}^3	u)	•					
42.		oltage follower			h)	Is non-i	nverting						
	a)	Has a gain of		1.2	p)		of these						
	c)	Has no feedba	ack re	esistor	d)	rias an							
43.	A Zener diode works on the principle of												
	a)	- unction											
٠.	b)	and the second s											
	c)	Diffusion of charge carriers across the junction											
	d)	Hoping of cha	nction										
44.	A pl	nase shift oscilla		as			O almoulto						
	a)	Three RC circ	uit		b)		C circuits						
	c)	A T-type circu	it		d)	A π -typ	e circuit						
45.	L va	lue for the state	e 2 _{Da} ,	, is given b	у								
			b)	1	c)	2	d)	3					
	a)	U	υ,				,						
46.		variation of the		tensity of	X-rays v	vith the	thickness	of the	absorbing				
	a)	$I = I_0 \exp\left(-\mu\right)$	x) ·		b)	$I = I_0$ ex	$p(\mu x)$,					
	c)	$I = I_0 \exp\left(-\frac{\mu}{x}\right)$			d)	$I = I_0 ex$	$p\left(\frac{\mu}{x}\right)$						
47.	A co	ovalently bonde	d crys	stal is									
	a)	Aluminium			b)	Sodium	chloride						
	c)	Germanium			d)	Lead							
	,												

48.	For inter	Bragg's ratomic d	reflection istance <i>d</i> m	X-ray wave length λ an						
	a)	$\lambda > 2d$	b)	$\lambda = 2 d$	c)	$\lambda \leq 2d$	d)	$\lambda < 2d$		
49.	Whi	ch of the	following is	s NOT a pi	roperty of	conventio	onal supe	rconductors	s?	

- - a) The superconductors are perfect diamagnets
 - b) Superconductivity can be destroyed by application of a magnetic field
 - c) The specific heat of superconductors decreases exponentially with decrease in the temperature
 - d) The energy spectrum of a superconductor shows a band gap of the order of 1eV
- 50. According to Debye theory the heat capacity of a solid at low temperature is proportional to
 - a)
- b) T^3

- 51. The Curie law $\left(\chi = \frac{C}{T}\right)$ holds for
 - Diamagnetic substances a)
- Paramagnetic substances b)
- Ferromagnetic substances
- All substances d)
- 52. According to the shell model, the ground state of $\frac{15}{8}$ O nucleus is
 - a) $\frac{3^+}{2}$ b) $\frac{1^+}{2}$ c) $\frac{3^-}{2}$ d) $\frac{1^-}{2}$

- 53. Fast neutrons may be easily slowed down by
 - Passing them through a substance rich in hydrogen a)
 - Using shield of lead b)
 - Diffraction through a slit c)
 - None of these d)

54. Which of the following decay is forbidden?

a)
$$\mu^- \rightarrow e^- + \vartheta_\mu + \overline{\vartheta}_e$$

b)
$$\pi^+ \rightarrow \mu^+ + \theta_{\mu}$$

c)
$$\pi^+ \rightarrow e^+ + \theta_e$$

d)
$$\mu^- \rightarrow e^+ + e^- + e^-$$

55. Hamilton's equations of motion are

a)
$$\frac{\partial H}{\partial p} = \dot{q}, \frac{\partial H}{\partial q} = \dot{p}$$

b)
$$\frac{\partial H}{\partial p} = -q, \quad \frac{\partial H}{\partial q} = p$$

c)
$$\frac{\partial H}{\partial p} = -\dot{q}, \quad \frac{\partial H}{\partial q} = \dot{p}$$

d)
$$\frac{\partial H}{\partial p} = \dot{q}, \quad \frac{\partial H}{\partial q} = -\dot{p}$$

56. The work done in moving a charge of 20C from A to B over a distance of 0.2m is 2J. Then $V_a - V_b$ is

a)
$$2 \times 10^{-2} V$$

b)
$$-1 \times 10^{-1} V$$

c)
$$3 \times 10^{-1} V$$

a)
$$2 \times 10^{-2} V$$
 b) $-1 \times 10^{-1} V$ c) $3 \times 10^{-1} V$ d) $4 \times 10^{-2} V$

57. A solenoid is 2 m long and 3 cm in diameter. It has 5 layers of winding of 1000 turns each and carries a current of 5A. The magnetic field at the centre of the solenoid is

a)
$$2.5 \times 10^{-3} T$$

b)
$$1.4 \times 10^{-5}$$
 7

c)
$$\sim 1.3 \times 10^{-4} 7$$

a)
$$2.5 \times 10^{-3} T$$
 b) $1.4 \times 10^{-5} T$ c) $1.3 \times 10^{-4} T$ d) $1.57 \times 10^{-2} T$

- 58. The magnetic energy in an inductor changes from maximum value to minimum value in 5 ms when connected to an a.c. source. The frequency of the source is
 - 50 Hz a)
- b) 200 Hz
- c) 500 Hz
- d) 20 Hz
- 59. The refractive index of water is 4/3 and that of glass is 5/3. What will be the critical angle of ray of light entering water from glass?
 - a)
- $\sin^{-1} 4/5$ b) $\sin^{-1} 5/4$ c) $\sin^{-1} 1/2$
- d) $\sin^{-1} 2/1$
- The amplitude ratio of two superposing waves is 2:1. The ratio of maximum and minimum intensities is
 - a) 1:1
- b) 9:1
- c) 4:1
- d) 2:1

PHYSICS (APPLIED ELECTRONICS/SPACE PHYSICS/ RENEWABLE ENERGY)

PART - B

(Descriptive Type)

Answer any eight questions.

 $(8 \times 5 = 40 \text{ Marks})$

- What is simple harmonic motion? Show that the total energy of a harmonic oscillator is a constant.
- Distinguish between type I and type II superconductors.
- Obtain the steady state form of Schrodinger equation.
- 4. State the postulates of Bohr atom model obtain expressions for the radius and electron energy of the n^{th} orbit of hydrogen atom.
- Distinguish between Raman spectra and IR specra.
- 6. Draw the circuit diagram and explain the working of a Phase shift oscillator.
- Explain semi- empirical mass formula obtained using the liquid drop model of the nucleus.
- 8. Explain quarter wave plates and half wave plates.
- 9. How can an AND gate and OR gate be realized using a NAND gate?
- 10. Explain Einstein's coefficients.
- 11. Explain Zeeman effect.
- 12. Calculate the permitted energy levels of an electron, in a box 1 Å wide.